Some examples of right self-injective rings which are not left self-injective

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Right Self-injective Rings in Which Every Element Is a Sum of Two Units

In 1954 Zelinsky [16] proved that every element in the ring of linear transformations of a vector space V over a division ring D is a sum of two units unless dim V = 1 and D = Z2. Because EndD(V ) is a (von-Neumann) regular ring, Zelinsky’s result generated quite a bit of interest in regular rings that have the property that every element is a sum of (two) units. Clearly, a ring R, having Z2 as...

متن کامل

Graded self-injective algebras “are” trivial extensions

Article history: Received 20 March 2009 Available online 9 June 2009 Communicated by Michel Van den Bergh Dedicated to Professor Helmut Lenzing on the occasion of his seventieth birthday

متن کامل

Torsionfree Dimension of Modules and Self-injective Dimension of Rings

Let R be a left and right Noetherian ring. We introduce the notion of the torsionfree dimension of finitely generated R-modules. For any n 0, we prove that R is a Gorenstein ring with self-injective dimension at most n if and only if every finitely generated left R-module and every finitely generated right R-module have torsionfree dimension at most n, if and only if every finitely generated le...

متن کامل

Rings for which every simple module is almost injective

We introduce the class of “right almost V-rings” which is properly between the classes of right V-rings and right good rings. A ring R is called a right almost V-ring if every simple R-module is almost injective. It is proved that R is a right almost V-ring if and only if for every R-module M, any complement of every simple submodule of M is a direct summand. Moreover, R is a right almost V-rin...

متن کامل

Injective Modules and Fp-injective Modules over Valuation Rings

It is shown that each almost maximal valuation ring R, such that every indecomposable injective R-module is countably generated, satisfies the following condition (C): each fp-injective R-module is locally injective. The converse holds if R is a domain. Moreover, it is proved that a valuation ring R that satisfies this condition (C) is almost maximal. The converse holds if Spec(R) is countable....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1970

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1970-0265414-2